Intronic and exonic sequences modulate 5' splice site selection in plant nuclei.
نویسندگان
چکیده
Pre-mRNA transcripts in a variety of organisms, including plants, Drosophila and Caenorhabditis elegans, contain introns which are significantly richer in adenosine and uridine residues than their flanking exons. Previous analyses using exonic and intronic replacements between two nonequivalent 5'splice sites in the 469 nt long rbcS3A intron 1 provided the first evidence indicating that, in both tobacco and Drosophila nuclei, 5'splice site selection is strongly influenced by the position of that site relative to the AU transition point between exon and intron. To differentiate between two potential models for 5'splice site recognition, we have expressed a completely different set of intronic and exonic replacement constructs containing identical 5'splice sites upstream of beta-conglycinin intron 4 (115 nt). Mutagenesis and deletion of the upstream 5'splice site demonstrate that intronic AU-rich sequences function by promoting recognition of the most upstream 5'splice site rather than by masking the downstream 5'splice site. Sequence insertions define a role for AG-rich exonic sequences in plant pre-mRNA splicing by demonstrating that an AG-rich element is capable of promoting downstream 5'splice site recognition. We conclude that AU-rich intronic sequences, AG-rich exonic sequences and the 5'splice site itself collectively define 5'intron boundaries in dicot nuclei.
منابع مشابه
Supporting Material Response to: Alternative splicing at NAGNAG acceptors: Simply noise or noise and more?
In their letter Hiller et al. mention the conservation test that was performed in [1] and the more recent results of Akerman and Mandel-Gutfreund [2]. To explain our interpretation of these results we first briefly describe our rough hypothesis for the origin of the bulk of NAGNAG splice variations. We believe that in general the splicing machinery splices invariantly at the first AG that follo...
متن کاملMultiple features contribute to efficient constitutive splicing of an unusually large exon.
Vertebrate internal exons are usually between 50 and 400 nt long; exons outside this size range may require additional exonic and/or intronic sequences to be spliced into the mature mRNA. The mouse polymeric immunoglobulin receptor gene has a 654 nt exon that is efficiently spliced into the mRNA. We have examined this exon to identify features that contribute to its efficient splicing despite i...
متن کاملDynamic Regulation of Alternative Splicing by Silencers that Modulate 5′ Splice Site Competition
Alternative splicing makes a major contribution to proteomic diversity in higher eukaryotes with approximately 70% of genes encoding two or more isoforms. In most cases, the molecular mechanisms responsible for splice site choice remain poorly understood. Here, we used a randomization-selection approach in vitro to identify sequence elements that could silence a proximal strong 5' splice site l...
متن کاملComparative analysis detects dependencies among the 5' splice-site positions.
Human-mouse comparative genomics is an informative tool to assess sequence functionality as inferred from its conservation level. We used this approach to examine dependency among different positions of the 5' splice site. We compiled a data set of 50,493 homologous human-mouse internal exons and analyzed the frequency of changes among different positions of homologous human-mouse 5' splice-sit...
متن کاملRNA landscape of evolution for optimal exon and intron discrimination.
Accurate pre-mRNA splicing requires primary splicing signals, including the splice sites, a polypyrimidine tract, and a branch site, other splicing-regulatory elements (SREs). The SREs include exonic splicing enhancers (ESEs), exonic splicing silencers (ESSs), intronic splicing enhancers (ISEs), and intronic splicing silencers (ISSs), which are typically located near the splice sites. However, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 25 5 شماره
صفحات -
تاریخ انتشار 1997